Vision

To become Australia’s leading provider of innovative and pragmatic research, to assist the sports and recreation sector and government, optimise the development of participation programs, facilities, and community health and wellbeing.
Summary

1. Update on research publications
2. Update on SSA research summaries
3. Update on web/technology developments
Critical factors for sport and recreation

- Participant
- Population
- Facilities

Health
4 key areas

• Participation levels and trends
• Influences on participation
• Value of sport: the health benefits of participation
• Places to play: the nexus between facilities and participation
Health benefits of participation in sport

• A systematic review of the psychological and social benefits of participation in sport
 – For children and adolescents
 – For adults
 – International Journal of Behavioral Nutrition and Physical Activity
Health benefits of participation in sport

• Many psychological and social health benefits associated with participation

• Club and team sport compared to individual forms of physical activity associated with better psychological and social health
 – Social nature
 – Choice and fun

• Children and adolescents – social
 – Social interaction/integration, social skills and improved self-esteem

• Adults – psychological
 – Wellbeing, reduced stress and distress
Research: ERASS

1. Integrating public health and sport management: sport participation trends 2001-2010. *Sport Management Review*

2. Participation in physical activity and sport: Associations with socio-economic status and geographical location. *Journal of Science and Medicine in Sport*

3. The contribution of sport to health-enhancing physical activity levels.
1. Trends in participation

Integrating public health and sport management: sport participation trends 2001-2010.

- Participation in LTPA analysed by year, gender and age
 - Any participation, organised context, club
- Participation in “any LTPA” increased significantly
- Participation in organised and club contexts remained largely steady
2. Participation, SES, geographical location

Relationship of participation in PA and sport to socio-economic status (SES) and geographical location (remoteness)

- Investigated the relationships of participation, frequency and context (organised/club) of participation, to SES and location
- Overall, the rate of “any participation in past 12 months” increased as SES increased and decreased as remoteness increased
- However, when 95 activity types examined separately
 - Few activity types were strongly +vely related (SES- or remoteness-prohibitive) & most of these were ‘niche’ activities
 - As SES decreased and remoteness increased, participation in many traditional Australian team sports increased (-ve relationship)
- Regular participation and participation in organised contexts are less related than “any participation” to SES or remoteness
 - Once initial engagement in PA and sport is established, SES and remoteness are not critical determinants of the depth of engagement
Contribution of sport to health-enhancing physical activity levels

- A health-enhancing leisure-time physical activity (HELPA) is defined as one with MET of 3.5 (e.g. brisk walking) or more
- 95 types of LTPA allocated to either HELPA or not
- 27% of HELPA activity was in organised settings
- 17% was in club settings
- 10% was in organised non-club settings
Context of HELPA participation

- non-organised: 73%
- organised: 10%
 - club: 17%
Participation in last two weeks - HELPA sport setting

- Club: 39%
- Non-organised: 50%
- Organised: 11%
Participation in other selected PA

<table>
<thead>
<tr>
<th>“Sport-supporting” activity</th>
<th>Those who participate in both any club sport and activity</th>
<th>Total for activity</th>
<th>Those who participate in both any club sport and activity: as a % of total for activity</th>
<th>Total for any club sport</th>
<th>Those who participate in both any club sport and activity: as a % of total for any club sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobics</td>
<td>b 364</td>
<td>A 2989</td>
<td>b/A (%) 12.2</td>
<td>S 2502</td>
<td>b/S (%) 14.5</td>
</tr>
<tr>
<td>Running</td>
<td>258</td>
<td>1275</td>
<td>20.2</td>
<td>2502</td>
<td>10.3</td>
</tr>
<tr>
<td>Weight Training</td>
<td>59</td>
<td>395</td>
<td>14.9</td>
<td>2502</td>
<td>2.4</td>
</tr>
<tr>
<td>Walking</td>
<td>426</td>
<td>5445</td>
<td>7.8</td>
<td>2502</td>
<td>17.0</td>
</tr>
</tbody>
</table>
Research: SSA data

1. Age patterns of participation in sport
2. Associations between number of sports facilities and participation in sport and the population
3. Retention and drop-out in sport across the lifespan
4. Transition from modified programs to competition
5. Growth plan for facilities for the future decade
1. Age patterns of participation in sport

Age patterns of participation

Participation in sport is popular, especially amongst children and adolescents. It is consistently reported that as age increases, participation in sport decreases. This report provides a breakdown of participation in X across the lifespan. It also provides an age profile benchmark of X compared to participation in five other major sports in Victoria.

Indicator Definition

A participant is generally defined as a registered member of a club affiliated with a State Sporting Association in Victoria, in 2012.

Key Points

- The greatest proportion of X participants is in the 10-14 year age group, followed by the 5-9 year age group.
- X has a greater proportion of players in the 10-14 year age group than other sports.
- Even though there are differences between sports in the age of early adopters, the proportion of participants aged 15-19 is quite similar for all sports but one, generally ranging from 14-18% of all participants in the sport.
- The high proportion of participants in the younger categories is likely to be influenced by ‘sampling’, that is, children playing a number of sports when younger, and then typically specialising in fewer sports as they get older.
- There is a higher proportion of younger X participants amongst females than amongst males.
- The age profiles in X participants in metropolitan and rural and regional areas are very similar.

Table 1: Age profiles of participants

<table>
<thead>
<tr>
<th>Age</th>
<th>0-4</th>
<th>5-9</th>
<th>10-16</th>
<th>17-20</th>
<th>21-25</th>
<th>26-30</th>
<th>31-35</th>
<th>36-40</th>
<th>41-45</th>
<th>46-50</th>
<th>51-55</th>
<th>56-60</th>
<th>61-65</th>
<th>66-70</th>
<th>71+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.2</td>
<td>17.8</td>
<td>35.2</td>
<td>17.5</td>
<td>8.6</td>
<td>6.3</td>
<td>4.1</td>
<td>3.7</td>
<td>5.1</td>
<td>1.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>A</td>
<td>0.2</td>
<td>16.7</td>
<td>33.4</td>
<td>16.3</td>
<td>11.7</td>
<td>7.2</td>
<td>4.2</td>
<td>2.4</td>
<td>3.1</td>
<td>0.8</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>0.2</td>
<td>7.9</td>
<td>21.2</td>
<td>18.1</td>
<td>12.2</td>
<td>10.0</td>
<td>7.0</td>
<td>5.5</td>
<td>11.0</td>
<td>5.6</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>0.0</td>
<td>1.0</td>
<td>0.6</td>
<td>1.0</td>
<td>0.6</td>
<td>0.9</td>
<td>1.1</td>
<td>1.7</td>
<td>5.6</td>
<td>12.4</td>
<td>20.9</td>
<td>47.9</td>
<td>47.9</td>
<td>47.9</td>
<td>47.9</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>0.4</td>
<td>9.3</td>
<td>25.0</td>
<td>14.7</td>
<td>4.3</td>
<td>4.7</td>
<td>4.9</td>
<td>14.1</td>
<td>6.5</td>
<td>4.0</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>1.3</td>
<td>15.7</td>
<td>25.4</td>
<td>15.6</td>
<td>10.1</td>
<td>8.5</td>
<td>6.7</td>
<td>5.3</td>
<td>0.5</td>
<td>2.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 1: Age profiles of males and females

Figure 2: Age profiles of metropolitan and rural & regional

Notes: To facilitate comparisons across sports with very different overall participation levels, Table 1 and Figures 1 and 2 do not show age specific participation rates (the percentage of each age group who are participants) but rather participant age profiles (the percentage of participants who are in each age group). To maintain confidentiality, total numbers of participants are shown only for X (on Figures 1 and 2).
2. Associations between facilities and participation (79 Victorian LGAs)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities per 1,000 population</td>
<td>2.11</td>
<td>1.86</td>
<td>0.33-8.21</td>
</tr>
<tr>
<td>Playing fields/courts per 1,000 population</td>
<td>4.66</td>
<td>4.13</td>
<td>0.7-20.57</td>
</tr>
<tr>
<td>Facilities per 1,000 participant registrations</td>
<td>14.67</td>
<td>9.39</td>
<td>4.26-57.67</td>
</tr>
<tr>
<td>Playing fields/courts per 1,000 participant registrations</td>
<td>32.44</td>
<td>20.11</td>
<td>11.12-126.16</td>
</tr>
<tr>
<td>Participation: participant registrations per 1,000 population</td>
<td>128.84</td>
<td>47.84</td>
<td>32.87-243.04</td>
</tr>
<tr>
<td>SEIFA IRSAD score</td>
<td>989.02</td>
<td>50.37</td>
<td>887.9-1114.3</td>
</tr>
</tbody>
</table>
2. Associations* between facilities and participation
(79 Victorian LGAs)

<table>
<thead>
<tr>
<th></th>
<th>Participation: registrations/1,000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (n=79)</td>
</tr>
<tr>
<td>facilities/1,000 population</td>
<td>0.728</td>
</tr>
<tr>
<td>fields/1,000 population</td>
<td>0.750</td>
</tr>
<tr>
<td>facilities/1,000 registrations</td>
<td>0.474</td>
</tr>
<tr>
<td>fields/1,000 registrations</td>
<td>0.506</td>
</tr>
<tr>
<td>SEIFA IRSAD</td>
<td>-0.262</td>
</tr>
</tbody>
</table>

* Pearsons correlation coefficient; all significant p<.05 except two greyed out
3. Retention and drop-out in sport

Figure 1. All 2011 commencers – all age groups
Maps

- Facility density per participant, population and future population
Provision of facilities
Playing fields/courts per participant: by LGA
Provision of facilities

City of Brimbank
Research summary report May 2014

Sports facilities
Access to sports facilities is an important factor with regard to participation in sport. This report provides a geographical breakdown of the provision of sports facilities within the City of Brimbank and benchmark comparisons with other areas.

Indicator definition: A sporting facility is defined as a facility associated with one of seven State Sporting Associations (SSAs) in Victoria, in 2012. The measure of facility provision used is the total number of facilities associated with the seven sports per 10,000 persons in the population. Facilities such as ovals which are used by more than one sport were counted once for each associated sport. Data sources: facilities data collected during 2011-2012 by Sport and Recreation Victoria, Department of Transport, Planning and Local Infrastructure, and validated by local government authorities; and 2012 Estimated Resident Population, Australian Bureau of Statistics.

Key Points
- The rate of sports facility provision is quite variable at every geographic level from PHAs within the City of Brimbank to different LGAs in Melbourne and regions of Victoria.
- The rate of sports facility provision in the City of Brimbank is the lowest of all LGAs in Melbourne.

Geographic variation
There were 3.2 facilities per 10,000 persons living in the City of Brimbank. This rate is lower than those for Melbourne (5.8) and Victoria (8.8) (Table 1).

Table 1. Sports Facilities*, by PHAs in Brimbank City, 2012

<table>
<thead>
<tr>
<th>Region</th>
<th>Number*</th>
<th>Rate*</th>
<th>Ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimbank</td>
<td>41</td>
<td>32</td>
<td>0.36</td>
</tr>
<tr>
<td>Western Melbourne</td>
<td>307</td>
<td>4.6</td>
<td>0.53</td>
</tr>
<tr>
<td>Melbourne</td>
<td>2,502</td>
<td>5.5</td>
<td>0.62</td>
</tr>
<tr>
<td>County Victoria</td>
<td>2,615</td>
<td>19.0</td>
<td>2.16</td>
</tr>
<tr>
<td>Victoria</td>
<td>4,987</td>
<td>9.8</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* In seven major sports * Rate per 10,000 population
Ratio of rate in the area to rate for Victoria

The highest rates of provision of sports facilities were in Keilor (10.4) and in the southern PHAs (4.1 and 4.3). The lowest rates were in a belt extending from the central east to the north-west (Map 1 & Table 2).

References
Contact Details

Associate Professor Rochelle Eime
VicHealth Research Practice Fellow
Federation University, Victoria University
r.eime@federation.edu.au
(03) 5327 9687
www.sportandrecreationspatial.com.au